p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.87C23, C23.46C24, C22.95C25, C24.508C23, C4.812+ (1+4), C4⋊Q8⋊93C22, D4⋊6D4⋊23C2, Q8⋊6D4⋊19C2, (C4×D4)⋊47C22, (C2×C4).85C24, (C4×Q8)⋊46C22, C4⋊1D4⋊53C22, C4⋊D4⋊83C22, C4⋊C4.491C23, C22⋊Q8⋊96C22, C42⋊2C2⋊5C22, C22.32C24⋊5C2, (C2×D4).304C23, C4.4D4⋊27C22, (C2×Q8).290C23, C42.C2⋊56C22, C42⋊C2⋊41C22, C22.19C24⋊31C2, C22.29C24⋊24C2, C22≀C2.29C22, C22⋊C4.105C23, (C22×C4).366C23, (C2×C42).948C22, (C23×C4).612C22, C2.36(C2×2+ (1+4)), C2.29(C2.C25), C22.26C24⋊39C2, (C22×D4).600C22, C22.D4⋊52C22, C23.33C23⋊21C2, C22.49C24⋊13C2, C22.53C24⋊11C2, C23.37C23⋊38C2, C22.50C24⋊20C2, C22.47C24⋊16C2, (C2×C4×D4)⋊92C2, (C2×C4)⋊6(C4○D4), (C2×C4⋊C4)⋊76C22, C4.178(C2×C4○D4), (C2×C4○D4)⋊33C22, C2.51(C22×C4○D4), C22.16(C2×C4○D4), (C2×C22⋊C4).547C22, SmallGroup(128,2238)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 884 in 570 conjugacy classes, 390 normal (30 characteristic)
C1, C2 [×3], C2 [×10], C4 [×6], C4 [×19], C22, C22 [×2], C22 [×34], C2×C4 [×6], C2×C4 [×20], C2×C4 [×33], D4 [×42], Q8 [×10], C23, C23 [×8], C23 [×8], C42 [×4], C42 [×12], C22⋊C4 [×44], C4⋊C4 [×32], C22×C4 [×3], C22×C4 [×22], C22×C4 [×4], C2×D4 [×30], C2×D4 [×4], C2×Q8 [×6], C4○D4 [×16], C24 [×2], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C2×C4⋊C4 [×4], C42⋊C2 [×10], C4×D4 [×32], C4×Q8 [×8], C22≀C2 [×8], C4⋊D4 [×24], C22⋊Q8 [×8], C22.D4 [×16], C4.4D4 [×14], C42.C2 [×2], C42⋊2C2 [×8], C4⋊1D4, C4⋊1D4 [×4], C4⋊Q8 [×3], C23×C4 [×2], C22×D4, C2×C4○D4 [×6], C2×C4×D4, C23.33C23 [×2], C22.19C24 [×4], C22.26C24, C23.37C23, C22.29C24 [×2], C22.32C24 [×4], D4⋊6D4 [×2], Q8⋊6D4 [×2], C22.47C24 [×4], C22.49C24 [×2], C22.50C24 [×2], C22.53C24 [×4], C22.95C25
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C4○D4 [×4], C24 [×31], C2×C4○D4 [×6], 2+ (1+4) [×2], C25, C22×C4○D4, C2×2+ (1+4), C2.C25, C22.95C25
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=e2=b, f2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
(1 22)(2 23)(3 24)(4 21)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 14)(2 27)(3 16)(4 25)(5 29)(6 20)(7 31)(8 18)(9 19)(10 30)(11 17)(12 32)(13 21)(15 23)(22 26)(24 28)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8 3 6)(2 5 4 7)(9 21 11 23)(10 22 12 24)(13 19 15 17)(14 20 16 18)(25 29 27 31)(26 30 28 32)
(1 9 22 5)(2 6 23 10)(3 11 24 7)(4 8 21 12)(13 32 25 18)(14 19 26 29)(15 30 27 20)(16 17 28 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 27)(14 28)(15 25)(16 26)(17 29)(18 30)(19 31)(20 32)(21 23)(22 24)
G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,21)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,14)(2,27)(3,16)(4,25)(5,29)(6,20)(7,31)(8,18)(9,19)(10,30)(11,17)(12,32)(13,21)(15,23)(22,26)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,3,6)(2,5,4,7)(9,21,11,23)(10,22,12,24)(13,19,15,17)(14,20,16,18)(25,29,27,31)(26,30,28,32), (1,9,22,5)(2,6,23,10)(3,11,24,7)(4,8,21,12)(13,32,25,18)(14,19,26,29)(15,30,27,20)(16,17,28,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,27)(14,28)(15,25)(16,26)(17,29)(18,30)(19,31)(20,32)(21,23)(22,24)>;
G:=Group( (1,22)(2,23)(3,24)(4,21)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,14)(2,27)(3,16)(4,25)(5,29)(6,20)(7,31)(8,18)(9,19)(10,30)(11,17)(12,32)(13,21)(15,23)(22,26)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,3,6)(2,5,4,7)(9,21,11,23)(10,22,12,24)(13,19,15,17)(14,20,16,18)(25,29,27,31)(26,30,28,32), (1,9,22,5)(2,6,23,10)(3,11,24,7)(4,8,21,12)(13,32,25,18)(14,19,26,29)(15,30,27,20)(16,17,28,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,27)(14,28)(15,25)(16,26)(17,29)(18,30)(19,31)(20,32)(21,23)(22,24) );
G=PermutationGroup([(1,22),(2,23),(3,24),(4,21),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,14),(2,27),(3,16),(4,25),(5,29),(6,20),(7,31),(8,18),(9,19),(10,30),(11,17),(12,32),(13,21),(15,23),(22,26),(24,28)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8,3,6),(2,5,4,7),(9,21,11,23),(10,22,12,24),(13,19,15,17),(14,20,16,18),(25,29,27,31),(26,30,28,32)], [(1,9,22,5),(2,6,23,10),(3,11,24,7),(4,8,21,12),(13,32,25,18),(14,19,26,29),(15,30,27,20),(16,17,28,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,27),(14,28),(15,25),(16,26),(17,29),(18,30),(19,31),(20,32),(21,23),(22,24)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | ··· | 4P | 4Q | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ (1+4) | C2.C25 |
kernel | C22.95C25 | C2×C4×D4 | C23.33C23 | C22.19C24 | C22.26C24 | C23.37C23 | C22.29C24 | C22.32C24 | D4⋊6D4 | Q8⋊6D4 | C22.47C24 | C22.49C24 | C22.50C24 | C22.53C24 | C2×C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^2._{95}C_2^5
% in TeX
G:=Group("C2^2.95C2^5");
// GroupNames label
G:=SmallGroup(128,2238);
// by ID
G=gap.SmallGroup(128,2238);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,352,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=e^2=b,f^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations